Following the methodology from Engelke et al. (2022) , fits an extremal graph structure using the neighborhood selection approach (see Meinshausen and Bühlmann (2006) ) or graphical lasso (see Friedman et al. (2008) ).
Arguments
- data
Numeric \(n \times d\) matrix, where
n
is the number of observations andd
is the dimension.- p
Numeric between 0 and 1 or
NULL
. IfNULL
(default), it is assumed that thedata
are already on multivariate Pareto scale. Else,p
is used as the probability in the functiondata2mpareto()
to standardize thedata
.- rholist
Numeric vector of non-negative regularization parameters for the lasso. Default is
rholist = c(0.1, 0.15, 0.19, 0.205)
. For details seeglasso::glassopath()
.- reg_method
One of
"ns", "glasso"
, for neighborhood selection and graphical lasso, respectively. Default isreg_method = "ns"
. For details see Meinshausen and Bühlmann (2006) , Friedman et al. (2008) .- complete_Gamma
Whether you want to try fto complete Gamma matrix. Default is
complete_Gamma = FALSE
.
Value
List made of:
graph
A list of
igraph::graph
objects representing the fitted graphs for eachrho
inrholist
.Gamma
A list of numeric estimated \(d \times d\) variogram matrices \(\Gamma\) corresponding to the fitted graphs, for each
rho
inrholist
. Ifcomplete_Gamma = FALSE
or the underlying graph is not connected, it returnsNULL
.rholist
The list of penalty coefficients.
graph_ic
A list of
igraph::graph
objects representing the optimal graph according to theaic
,bic
, andmbic
information criteria. Ifreg_method = "glasso"
, it returns a list ofNULL
.Gamma_ic
A list of numeric \(d \times d\) estimated variogram matrices \(\Gamma\) corresponding to the
aic
,bic
, andmbic
information criteria. Ifreg_method = "glasso"
,complete_Gamma = FALSE
, or the underlying graph is not connected, it returns a list ofNULL
.
References
Engelke S, Lalancette M, Volgushev S (2022).
“Learning extremal graphical structures in high dimensions.”
doi:10.48550/ARXIV.2111.00840
, Available from https://arxiv.org/abs/2111.00840., 2111.00840, https://arxiv.org/abs/2111.00840.
Friedman J, Hastie T, Tibshirani R (2008).
“Sparse inverse covariance estimation with the graphical lasso.”
Biostatistics, 9(3), 432--441.
Meinshausen N, Bühlmann P (2006).
“High-dimensional graphs and variable selection with the Lasso.”
Ann. Statist., 34(3), 1436 -- 1462.
doi:10.1214/009053606000000281
.
See also
Other structure estimation methods:
data2mpareto()
,
eglatent()
,
emst()
,
fit_graph_to_Theta()
Examples
set.seed(2)
m <- generate_random_model(d=6)
y <- rmpareto(n=500, par=m$Gamma)
ret <- eglearn(y)