Conversion between Huesler-Reiss parameter matrices
Source:R/matrix_transformations.R
parameterMatrixConversion.Rd
Converts between different matrices that parametrize the same Huesler-Reiss distribution: \(\Gamma\), \(\Sigma\), \(\Theta\), \(\Sigma^k\), \(\Theta^k\). The \((d-1) \times (d-1)\) matrices \(\Sigma^k\) and \(\Theta^k\) can also be given/returned as \(d \times d\) matrices with the kth row and column filled with zeros.
Usage
Gamma2Sigma(Gamma, k = NULL, full = FALSE, check = TRUE)
Gamma2Theta(Gamma, k = NULL, full = FALSE, check = TRUE)
Sigma2Gamma(Sigma, k = NULL, full = FALSE, check = TRUE)
Theta2Gamma(Theta, k = NULL, full = FALSE, check = TRUE)
Sigma2Theta(
Sigma,
k1 = NULL,
k2 = NULL,
full1 = FALSE,
full2 = FALSE,
check = TRUE
)
Theta2Sigma(
Theta,
k1 = NULL,
k2 = NULL,
full1 = FALSE,
full2 = FALSE,
check = TRUE
)
Theta2Theta(
Theta,
k1 = NULL,
k2 = NULL,
full1 = FALSE,
full2 = FALSE,
check = TRUE
)
Sigma2Sigma(
Sigma,
k1 = NULL,
k2 = NULL,
full1 = FALSE,
full2 = FALSE,
check = TRUE
)
Gamma2Gamma(Gamma, check = TRUE)
matrix2matrix(
M,
name1 = c("Gamma", "Sigma", "Theta")[1],
name2 = c("Gamma", "Sigma", "Theta")[1],
k1 = NULL,
k2 = NULL,
full1 = FALSE,
full2 = FALSE,
check = TRUE
)
Arguments
- Gamma
Numeric \(d \times d\) variogram matrix.
- k
NULL
if the input/output matrix is \(\Sigma\)/\(\Theta\). Else, an integer between 1 and d indicating the value of k in \(\Sigma^k\), \(\Theta^k\).- full
Logical. If
TRUE
and!is.null(k)
, the input/output matrix is a \(d \times d\) matrix with the kth row filled with zeros.- check
Whether to check the inputs and call
ensure_matrix_symmetry_and_truncate_zeros
on the outputs.- Sigma
Numeric \(d \times d\) or \((d-1) \times (d-1)\) covariance matrix.
- Theta
Numeric \(d \times d\) or \((d-1) \times (d-1)\) precision matrix.
- k1
NULL
if the input matrix is \(\Sigma\)/\(\Theta\). Else, an integer between 1 and d indicating the value of k in \(\Sigma^k\), \(\Theta^k\).- k2
NULL
if the output matrix is \(\Sigma\)/\(\Theta\). Else, an integer between 1 and d indicating the value of k in \(\Sigma^k\), \(\Theta^k\).- full1
Logical. If
TRUE
and!is.null(k1)
, the input is a \(d \times d\) matrix with the kth row filled with zeros.- full2
Logical. If
TRUE
and!is.null(k2)
, the output is a \(d \times d\) matrix with the kth row filled with zeros.- M
Numeric matrix, \(\Gamma\), \(\Sigma\), or \(\Theta\).
- name1
Name of the input representation.
- name2
Name of the output representation.
Details
If k
, k1
, or k2
is NULL
, the corresponding full*
argument is ignored.
Gamma2Gamma
only checks and returns the input.
matrix2matrix
is a wrapper function that calls the corresponding
conversion function implied by name1
, name2
.
See also
Other parameter matrix transformations:
Gamma2graph()
,
chi2Gamma()
,
par2Matrix()