Empirical estimation of extremal correlation matrix \(\chi\)
Source:R/estimation_param.R
emp_chi.Rd
Estimates empirically the matrix of bivariate extremal correlation coefficients \(\chi\).
Arguments
- data
Numeric \(n \times d\) matrix, where
n
is the number of observations andd
is the dimension.- p
Numeric scalar between 0 and 1 or
NULL
. IfNULL
(default), it is assumed that thedata
are already on multivariate Pareto scale. Else,p
is used as the probability indata2mpareto()
to standardize thedata
.- verbose
Print verbose progress information
Value
Numeric matrix \(d \times d\). The matrix contains the bivariate extremal coefficients \(\chi_{ij}\), for \(i, j = 1, ..., d\).
Details
emp_chi_pairwise
calls emp_chi
for each pair of observations.
This is more robust if the data contains many NA
s, but can take rather long.
See also
Other parameter estimation methods:
data2mpareto()
,
emp_chi_multdim()
,
emp_vario()
,
emtp2()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()
Examples
n <- 100
d <- 4
p <- .8
Gamma <- cbind(
c(0, 1.5, 1.5, 2),
c(1.5, 0, 2, 1.5),
c(1.5, 2, 0, 1.5),
c(2, 1.5, 1.5, 0)
)
set.seed(123)
my_data <- rmstable(n, "HR", d = d, par = Gamma)
emp_chi(my_data, p)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.00 0.65 0.55 0.45
#> [2,] 0.65 1.00 0.60 0.55
#> [3,] 0.55 0.60 1.00 0.60
#> [4,] 0.45 0.55 0.60 1.00