Parameter fitting for multivariate Huesler-Reiss Pareto distribution
Source:R/estimation_param_MLE.R
fmpareto_HR_MLE.Rd
Fits the parameters of a multivariate Huesler-Reiss Pareto distribution using (censored) maximum likelihood estimation.
Usage
fmpareto_HR_MLE(
data,
p = NULL,
cens = FALSE,
init = NULL,
fixParams = integer(0),
useTheta = TRUE,
maxit = 100,
graph = NULL,
optMethod = "BFGS",
nAttemptsFixInit = 3
)
Arguments
- data
Numeric \(n \times d\) matrix, where
n
is the number of observations andd
is the number of dimensions.- p
Numeric scalar between 0 and 1 or
NULL
. IfNULL
(default), it is assumed that thedata
is already on a multivariate Pareto scale. Else,p
is used as the probability indata2mpareto()
to standardize the data.- cens
Logical scalar. If true, then censored likelihood contributions are used for components below the threshold. This is computationally expensive and by default
cens = FALSE
.- init
Numeric vector or numeric matrix. Initial parameter values in the optimization. If
NULL
, the empirical variogram is used instead. Otherwise should be a numeric vector with one entry per edge ingraph
, or a complete variogram/precision matrix.- fixParams
Numeric or logical vector. Indices of the parameter vectors that are kept fixed (identical to
init
) during the optimization. Default isinteger(0)
.- useTheta
Logical. Whether to perform the MLE optimization in terms of Theta or Gamma.
- maxit
Positive integer. The maximum number of iterations in the optimization.
- graph
Graph object from
igraph
package orNULL
(implying the complete graph).- optMethod
String. A valid optimization method used by the function stats::optim. By default,
method = "BFGS"
.- nAttemptsFixInit
Numeric. If
useTheta=TRUE
and the initial parameterinit
is not valid, attempt to fix it first by making sure all off-diagonal entries are negative and then adding some random noise at most this many times.
Value
List consisting of:
convergence
Logical. Indicates whether the optimization converged or not.
Gamma
Numeric
d x d
matrix. Fitted variogram matrix.Theta
Numeric
d x d
matrix. Fitted precision matrix.par
Numeric vector. Optimal parameters, including fixed parameters.
par_opt
Numeric. Optimal parameters, excluding fixed parameters.
nllik
Numeric. Optimal value of the negative log-likelihood function.
hessian
Numeric matrix. Estimated Hessian matrix of the estimated parameters.
Details
Only the parameters corresponding to edges in graph
are optimized, the remaining
entries are implied by the graphical structure. If graph
is NULL
, the complete graph is used.
The optimization is done either in terms of the variogram (Gamma) or precision matrix (Theta),
depending on the value of useTheta
. If graph
is non-decomposable,
useTheta=TRUE
is significantly faster, otherwise they are similar in performance.
See also
Other parameter estimation methods:
data2mpareto()
,
emp_chi()
,
emp_chi_multdim()
,
emp_vario()
,
emtp2()
,
fmpareto_graph_HR()
,
loglik_HR()