Parameter fitting for multivariate Huesler-Reiss Pareto distribution
Source:R/estimation_param_MLE.R
fmpareto_HR_MLE.RdFits the parameters of a multivariate Huesler-Reiss Pareto distribution using (censored) maximum likelihood estimation.
Usage
fmpareto_HR_MLE(
data,
p = NULL,
cens = FALSE,
init = NULL,
fixParams = integer(0),
useTheta = TRUE,
maxit = 100,
graph = NULL,
optMethod = "BFGS",
nAttemptsFixInit = 3
)Arguments
- data
Numeric \(n \times d\) matrix, where
nis the number of observations anddis the number of dimensions.- p
Numeric scalar between 0 and 1 or
NULL. IfNULL(default), it is assumed that thedatais already on a multivariate Pareto scale. Else,pis used as the probability indata2mpareto()to standardize the data.- cens
Logical scalar. If true, then censored likelihood contributions are used for components below the threshold. This is computationally expensive and by default
cens = FALSE.- init
Numeric vector or numeric matrix. Initial parameter values in the optimization. If
NULL, the empirical variogram is used instead. Otherwise should be a numeric vector with one entry per edge ingraph, or a complete variogram/precision matrix.- fixParams
Numeric or logical vector. Indices of the parameter vectors that are kept fixed (identical to
init) during the optimization. Default isinteger(0).- useTheta
Logical. Whether to perform the MLE optimization in terms of Theta or Gamma.
- maxit
Positive integer. The maximum number of iterations in the optimization.
- graph
Graph object from
igraphpackage orNULL(implying the complete graph).- optMethod
String. A valid optimization method used by the function stats::optim. By default,
method = "BFGS".- nAttemptsFixInit
Numeric. If
useTheta=TRUEand the initial parameterinitis not valid, attempt to fix it first by making sure all off-diagonal entries are negative and then adding some random noise at most this many times.
Value
List consisting of:
convergenceLogical. Indicates whether the optimization converged or not.
GammaNumeric
d x dmatrix. Fitted variogram matrix.ThetaNumeric
d x dmatrix. Fitted precision matrix.parNumeric vector. Optimal parameters, including fixed parameters.
par_optNumeric. Optimal parameters, excluding fixed parameters.
nllikNumeric. Optimal value of the negative log-likelihood function.
hessianNumeric matrix. Estimated Hessian matrix of the estimated parameters.
Details
Only the parameters corresponding to edges in graph are optimized, the remaining
entries are implied by the graphical structure. If graph is NULL, the complete graph is used.
The optimization is done either in terms of the variogram (Gamma) or precision matrix (Theta),
depending on the value of useTheta. If graph is non-decomposable,
useTheta=TRUE is significantly faster, otherwise they are similar in performance.
See also
Other parameter estimation methods:
data2mpareto(),
emp_chi(),
emp_chi_multdim(),
emp_vario(),
emtp2(),
fmpareto_graph_HR(),
loglik_HR()