Estimation of the variogram matrix \(\Gamma\) of a Huesler-Reiss distribution
Source:R/estimation_param.R
emp_vario.RdEstimates the variogram of the Huesler-Reiss distribution empirically.
Usage
emp_vario(data, k = NULL, p = NULL)
emp_vario_pairwise(data, k = NULL, p = NULL, verbose = FALSE)Arguments
- data
Numeric \(n \times d\) matrix, where
nis the number of observations anddis the dimension.- k
Integer between 1 and
d. Component of the multivariate observations that is conditioned to be larger than the thresholdp. IfNULL(default), then an average over allkis returned.- p
Numeric between 0 and 1 or
NULL. IfNULL(default), it is assumed that thedataare already on multivariate Pareto scale. Else,pis used as the probability in the functiondata2mpareto()to standardize thedata.- verbose
Print verbose progress information
Details
emp_vario_pairwise calls emp_vario for each pair of observations.
This is more robust if the data contains many NAs, but can take rather long.
See also
Other parameter estimation methods:
data2mpareto(),
emp_chi(),
emp_chi_multdim(),
emtp2(),
fmpareto_HR_MLE(),
fmpareto_graph_HR(),
loglik_HR()
Examples
G <- generate_random_Gamma(d=5)
y <- rmpareto(n=100, par=G)
Ghat <- emp_vario(y)