Estimation of the variogram matrix \(\Gamma\) of a Huesler-Reiss distribution
Source:R/estimation_param.R
emp_vario.Rd
Estimates the variogram of the Huesler-Reiss distribution empirically.
Usage
emp_vario(data, k = NULL, p = NULL)
emp_vario_pairwise(data, k = NULL, p = NULL, verbose = FALSE)
Arguments
- data
Numeric \(n \times d\) matrix, where
n
is the number of observations andd
is the dimension.- k
Integer between 1 and
d
. Component of the multivariate observations that is conditioned to be larger than the thresholdp
. IfNULL
(default), then an average over allk
is returned.- p
Numeric between 0 and 1 or
NULL
. IfNULL
(default), it is assumed that thedata
are already on multivariate Pareto scale. Else,p
is used as the probability in the functiondata2mpareto()
to standardize thedata
.- verbose
Print verbose progress information
Details
emp_vario_pairwise
calls emp_vario
for each pair of observations.
This is more robust if the data contains many NA
s, but can take rather long.
See also
Other parameter estimation methods:
data2mpareto()
,
emp_chi()
,
emp_chi_multdim()
,
emtp2()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()
Examples
G <- generate_random_Gamma(d=5)
y <- rmpareto(n=100, par=G)
Ghat <- emp_vario(y)