Performs Gaussian likelihood optimization under Laplacian matrix constraints.
Source:R/estimation_emtp2.R
      emtp2.RdThis function implements a block descent algorithm to find the maximum of the Gaussian log-likelihood under the constraint that the concentration matrix is a Laplacian matrix. See Röttger et al. (2021) for details.
Arguments
- Gamma
- conditionally negative semidefinite matrix. This will be typically the empirical variogram matrix. 
- tol
- The convergence tolerance. The algorithm terminates when the sum of absolute differences between two iterations is below - tol.
- verbose
- if TRUE (default) the output will be printed. 
- initial_point
- if TRUE (default), the algorithm will construct an initial point before the iteration steps. 
Value
A list consisting of:
- G_emtp2
- The optimal value of the variogram matrix 
- it
- The number of iterations 
References
Röttger F, Engelke S, Zwiernik P (2021). “Total positivity in multivariate extremes.” doi:10.48550/ARXIV.2112.14727 , https://arxiv.org/abs/2112.14727.
See also
Other parameter estimation methods:
data2mpareto(),
emp_chi(),
emp_chi_multdim(),
emp_vario(),
fmpareto_HR_MLE(),
fmpareto_graph_HR(),
loglik_HR()