Performs Gaussian likelihood optimization under Laplacian matrix constraints.
Source:R/estimation_emtp2.R
emtp2.Rd
This function implements a block descent algorithm to find the maximum of the Gaussian log-likelihood under the constraint that the concentration matrix is a Laplacian matrix. See Röttger et al. (2021) for details.
Arguments
- Gamma
conditionally negative semidefinite matrix. This will be typically the empirical variogram matrix.
- tol
The convergence tolerance. The algorithm terminates when the sum of absolute differences between two iterations is below
tol
.- verbose
if TRUE (default) the output will be printed.
- initial_point
if TRUE (default), the algorithm will construct an initial point before the iteration steps.
Value
A list consisting of:
G_emtp2
The optimal value of the variogram matrix
it
The number of iterations
References
Röttger F, Engelke S, Zwiernik P (2021). “Total positivity in multivariate extremes.” doi:10.48550/ARXIV.2112.14727 , https://arxiv.org/abs/2112.14727.
See also
Other parameter estimation methods:
data2mpareto()
,
emp_chi()
,
emp_chi_multdim()
,
emp_vario()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()