Parameter fitting for Huesler-Reiss graphical models
Source:R/estimation_param.R
fmpareto_graph_HR.RdFits the parameter matrix (variogram) of a multivariate Huesler-Reiss Pareto distribution with a given graphical structure, using maximum-likelihood estimation or the empirical variogram.
Arguments
- data
Numeric \(n \times d\) matrix, where
nis the number of observations anddis the number of dimensions.- graph
Undirected, connected [
igraph::graph] object withdvertices, representing the graphical structure of the fitted Huesler-Reiss model.- p
Numeric between 0 and 1 or
NULL. IfNULL(default), it is assumed that thedatais already on a multivariate Pareto scale. Else,pis used as the probability in the functiondata2mpareto()to standardize thedata.- method
One of
c('vario', 'ML'), with'vario'as default, indicating the method to be used for parameter estimation. See details.- handleCliques
How to handle cliques and separators in the graph. See details.
- ...
Arguments passed to
fmpareto_HR_MLE(). Currentlycens,maxit,optMethod, anduseThetaare supported.
Details
If handleCliques='average', the marginal parameter matrix is estimated for
each maximal clique of the graph and then combined into a partial parameter
matrix by taking the average of entries from overlapping cliques. Lastly,
the full parameter matrix is computed using complete_Gamma().
If handleCliques='full', first the full parameter matrix is estimated using the
specified method and then the non-edge entries are adjusted such that the
final parameter matrix has the graphical structure indicated by graph.
If handleCliques='sequential', graph must be decomposable, and
method='ML' must be specified. The parameter matrix is first estimated on
the (recursive) separators and then on the rest of the cliques, keeping
previously estimated entries fixed.
If method='ML', the computational cost is mostly influenced by the total size
of the graph (if handleCliques='full') or the size of the cliques,
and can already take a significant amount of time for modest dimensions (e.g. d=3).
See also
Other parameter estimation methods:
data2mpareto(),
emp_chi(),
emp_chi_multdim(),
emp_vario(),
emtp2(),
fmpareto_HR_MLE(),
loglik_HR()